Does Image Segmentation Improve Object Categorization?
نویسندگان
چکیده
Image segmentation and object recognition are among the most fundamental problems in computer vision, and the potential interaction between these tasks has been discussed for many years. The usefulness of recognition for segmentation has been demonstrated with various top-down segmentation algorithms, however, the impact of bottom-up image segmentation as pre-processing for object recognition is not well understood. One factor impeding the utility of segmentation for recognition is the unsatisfactory quality of image segmentation algorithms. In this work we take advantage of a recently proposed method for computing multiple stable segmentations and illustrate the application of bottom-up image segmentation as a preprocessing step for object recognition and categorization. We extend a popular bag-of-features recognition model to provide multiple class categorization and localization of objects in images. We compare our categorization results to that of a conventional bag-of-features recognition model on the Caltech and PASCAL image databases.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملSegmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملInterleaving Object Categorization and Segmentation
In this chapter, we aim to connect the areas of object categorization and figure-ground segmentation. We present a novel method for the categorization of unfamiliar objects in difficult real-world scenes. The method generates object hypotheses without prior segmentation, which in turn can be used to obtain a category-specific figure-ground segmentation. In particular, the proposed approach uses...
متن کامل